
www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 341

A Software Inspection Exercise for the Systems Analysis
and Design Course

Craig K. Tyran
Department of Decision Sciences

Western Washington University

Bellingham, WA 98225-9077

craig.tyran@wwu.edu

ABSTRACT

Software inspections have been found to be one of the most effective ways to promote quality and productivity in software

development. Inspections are an especially important tactic to use during the analysis and design phases of software

development since the correction of a defect found early in development can be 10 to 100 times less expensive to fix than

rework performed at the system testing stage. Given its prominence within the software field, it is surprising that the software

inspection process does not receive more attention with respect to education in the area of Systems Analysis and Design. The

purpose of this article is to present an experiential exercise for the Systems Analysis and Design course that may be used to

promote learning with respect to the software inspection process. The focal point of the exercise is a system specification

document that describes the user requirements for a system for a fictional real estate company. The specification document

includes three components that are typical of a specification document: a descriptive narrative overview, a project dictionary,

and data flow diagrams (DFDs). Survey results regarding students’ perceptions of the exercise are also discussed.

Keywords: software inspection, software quality, systems analysis, education, data flow diagram, system specification

1. INTRODUCTION

Software inspections have been found to be one of the most

effective ways to promote quality and productivity in

software development (Gilb and Graham, 1993; Laitenberger

and DeBaud, 2000). The software inspection is a peer review

in which a small group of software developers examine

another software developer's work. The primary purpose of a

software inspection is to identify defects existing within

software work products developed throughout the

development process (e.g., user requirements specifications,

design documents, code). Data collected during the

inspection process is used not only to correct defects, but

also to evaluate and improve the development process itself.

Reports from industry indicate that inspections have gained

wide acceptance as a development tactic and can take up to

15 percent of the time allotted to a software project

(Ackerman, Buchwald, and Lewski, 1989). Based on the

demonstrated value of software inspections, more than one

industry expert has listed the software inspection process at

the top of the list of desirable software development

practices (Boehm, 1987; Glass, 1999).

While inspections have been found to be worthwhile for all

phases of the development process, it is an especially

important tactic to use during the analysis and design phases

of software development since the correction of a defect

found early in development can be 10 to 100 times less

expensive to fix than rework performed at the system testing

stage (Boehm and Basili, 2001; Doolan, 1992; Fagan, 1986).

Given its prominence within the software field, it is

somewhat surprising that the software inspection process

does not receive more attention with respect to education in

the area of Systems Analysis and Design. The purpose of this

article is to present an experiential exercise for the Systems

Analysis and Design course that may be used to promote

learning with respect to the software inspection process. The

next section provides a brief overview of the stages and

guidelines for the software inspection approach. Second, the

experiential exercise and the associated exercise materials

are discussed. Third, survey results regarding students’

perceptions of the exercise are summarized. The article

concludes with summary comments.

2. SOFTWARE INSPECTION PROCESS:
STAGES AND GUIDELINES

Software inspections were initially introduced and

formalized by an employee of International Business

Machines (IBM) named Michael Fagan in the early 1970s

(Fagan, 1976). As described by Fagan, the software

inspection process is a formal process encompassing six

stages (Fagan, 1986). While some aspects of the inspection

process have evolved over the years, Fagan’s stages continue

to serve as the basis for software inspections. Fagan’s six

stages are:

mailto:craig.tyran@wwu.edu

www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 342

‚ Planning: Determine that the materials that will be

inspected will be suitable. Also, arrange the

participation of the appropriate people and a meeting

place and time.

‚ Overview: Educate the inspection meeting participants

about the piece of work that will be inspected. Assign

roles to the participants (e.g., scribe, moderator).

‚ Preparation: Participants do their “homework” and

work individually to get familiar with the piece of work.

‚ Inspection: The sole purpose of the inspection stage of

the process is to find defects. Developing alternate

solutions or redesigning the materials under inspection

is strongly discouraged.

‚ Rework: The author resolves all of the defects

documented.

‚ Follow-up: The team moderator or the entire inspection

team checks on the author’s rework to make sure that

all of the corrections are effective and that no new

defects have been introduced.

In addition to defining the stages for the inspection process,

Fagan (and other practitioners) have suggested several

guidelines for inspection teams. Examples of specific

guidelines include (e.g., Ebenau and Strauss, 1994; Fagan,

1976; Yourdon, 1989):

‚ The number of participants on inspection teams should

be manageable (3-6 people).

‚ Emphasize error detection, not correction.

‚ Consider the work product guilty until proven innocent.

‚ The producer of the work product is always innocent

(i.e., focus on the product and not the person who

developed the product).

‚ Do not use inspections for purposes of performance

appraisal.

‚ Follow organizational standards (e.g.,

diagramming/naming conventions, etc.) to reduce

misunderstandings or disagreements.

‚ Recognize that there may be some "open issues" that

can not be resolved at the inspection meeting (e.g.,

when inspecting an analysis documents, there may be

some questions that need to be referred to the user).

‚ Keep length of inspection to be less than two hours to

reduce fatigue factor.

‚ Conduct inspections frequently to find errors as early as

possible.

3. OVERVIEW OF SOFTWARE INSPECTION
EXERCISE

The purpose of this section is to describe an experiential

software inspection exercise which has been developed to

introduce students to the software inspection process. The

exercise has been designed for a Systems Analysis and

Design course which emphasizes the traditional structured

analysis and design concepts (e.g., system development life

cycle, data flow diagrams, entity relationship diagrams, etc.).

A recent survey of Information Systems faculty members

conducted by Mahapatra, Nerur, and Slinkman (2005)

indicates that over 75% of the instructors surveyed focus on

the structured analysis and design concepts, instead of

object-oriented techniques (e.g., UML). Hence, the exercise

described in this manuscript is likely to be applicable for

many instructors. The focal point of the exercise is a system

specification document that describes the user requirements

for a system for a fictional real estate company. The

specification document includes three components that are

typical of a specification document (Yourdon, 1989): a

descriptive narrative overview, a project dictionary, and data

flow diagrams. Based on the early class room experiences

with the inspection exercise, the document was refined and

optimized.

As suggested by Teague and Pidgeon (1985), the four major

criteria for evaluating a system specification include

completeness, consistency, communicability, and

correctness. Examples of defects corresponding to each of

these criteria have been included into the document to

provide a challenging inspection task for students. Defects

include incomplete project dictionary entries, unbalanced

DFDs, poorly labeled data flows, and incorrect logical

design of processes and data flows. Over twenty defects

appear in the specification document (a list of defects is

available upon request from the author).

The steps of the exercise are based on the standard

inspection methodology (Ebenau and Strauss, 1994; Fagin,

1986; IEEE, 1989), but aspects of some steps have been

modified somewhat to accommodate the class room setting.

Fagan’s (1986) “Overview,” “Preparation”, and “Inspection”

stages receive the most emphasis for the experiential

exercise. However, the “Planning,” Rework,” and “Follow-

up” stages of the process may also be discussed by the

instructor when introducing and recapping the exercise.

Similar to a real inspection task, the exercise involves a

combination of individual work and small group interaction.

The author has found that it works best to administer the

inspection exercise about halfway through the Systems

Analysis and Design course, after the students have become

familiar with topics and activities of the analysis stage such

as systems development, process modeling using data flow

diagrams, the project dictionary, and data specifications. The

exercise has been designed to be a graded, in-class

assignment lasting about one and a half hours. The group

inspection portion of the exercise involves inspection

meetings of student teams and the exercise is graded based

on the final list of defects generated by each team.

Following is a discussion of the exercise steps.

3.1 Topic Overview: Software Inspections
Prior to the exercise, students are provided with a short

lecture (approximately 20 minutes) regarding the inspection

software process. The lecture summarizes the motivations

for conducting a software inspection, as well as the

traditional inspection methodology. As the inspection

exercise is being conducted in the Systems Analysis and

Design course, the types of work products (e.g., data flow

diagrams, project dictionary, user interface designs) that may

be examined during the Analysis and Design stages of the

system development process are discussed. Also, the

advantages of conducting inspections early in the software

www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 343

development process are emphasized. If an instructor has a

two-hour class period, then it would be possible to do this

lecture on the day of the inspection exercise. However,

experience has found that it typically works best to do the

lecture prior to the day of the exercise. The author has

observed that students tend to be excited about doing the

inspection exercise and prefer to start the exercise early in

the class period.

3.2 Initiating the Exercise
At the beginning of the exercise, the students are provided

with a handout that includes an “Inspection Report Form,”

an “Action List” form, and the directions for the exercise.

Also, the students are informed who their teammates will be.

If students are already working with a team for a course

project, then these teams may be used for the exercise.

Otherwise, inspection teams are assigned by the instructor.

Consistent with the industry recommendations (and based on

the author’s experience with the inspection exercise), a team

size of three to four students is preferred. After students are

informed of their team composition, the instructor provides a

very quick reminder about the purpose underlying the

software inspection process and then begins to review the

exercise materials.

The first handout form that is reviewed with the students is

the “Inspection Review Form” (available upon request from

the author). This form has been adapted from a published

source (Ebenau and Strauss, 1994) and helps to provide

students with a sense of how inspection meetings may be

scheduled and documented in an industry setting. The author

has also found that a review of this form can be useful

because it helps serve as a vehicle for discussing the types of

tasks that need to occur before, during, and after an

inspection meeting. For example, a discussion of the

“Coordinator’s Checklist” section of this form helps to

emphasize that inspection meetings require coordination

prior to the meeting and provides an opportunity for the

instructor to discuss the importance of the “Planning” stage

of Fagan’s inspection process. Also, a discussion of the

“Meeting Checklist” section of the form provides a good

way for the instructor to review the agenda for the exercise

(i.e., a review of the “ground rules,” individual inspection,

group inspection meeting).

The second form that is discussed is the “Action List” form

(available upon request from the author). A discussion of this

document helps the students to realize that the ultimate

deliverable for the exercise will be a list of defects (or areas

of concern) that will be assembled by their inspection team.

The author has found that many students find it useful to get

a solid sense of what their final output for the exercise will

be before they get immersed with the detailed aspects of the

exercise.

3.3 The Overview and Preparation Steps
Next, the instructor reviews the exercise directions with the

students (see Appendix A). There are three primary steps to

the exercise directions. As discussed in Appendix A, the first

step is for each student to prepare for the inspection meeting.

At this time, the instructor hands out a document that is a

“System Specification” for a fictional real estate company

(see Appendix B). The document includes a narrative

summary of the system processes, along with three data flow

diagrams, and a project dictionary. In this step, the instructor

provides a brief review of the specification document. This

portion of the exercise corresponds to Fagan’s “Overview”

stage. Next, students are asked to work on their own to read

through the contents of the document that they will be

inspecting. While the timing may vary, students are typically

provided ten to fifteen minutes of individual time to get

familiar with the specification document. During this period,

students are not asked to search for defects. Instead, they are

simply asked to get familiar with the contents of the

document. Once students have gotten familiar with the

document, the instructor requests that students to move onto

the second step of the exercise, in which students are asked

to identify as many defects as they can find. Along with the

first step, this is an individual activity that is aimed at

simulating the “Preparation” stage of the inspection process

described by Fagin and others (Ebenau and Strauss, 1994;

Fagin, 1986; IEEE, 1989). Students are provided about thirty

minutes for this portion of the exercise and are asked to

record defects that they find on a sheet a paper.

3.4 The Inspection Step
After the individual detection session, students meet with

their teammates to conduct the inspection meeting. This

corresponds to the Fagan’s “Inspection” stage of the process.

As described in Appendix A, during this stage of the process

the team members review their individual findings and create

the Action List. The Action List will serve as the final

deliverable for the team and will include the list of defects,

as well as the associated disposition codes. The teams are

encouraged to identify new defects during the inspection

meeting. About thirty minutes is allocated to this portion of

the exercise. At the end of this step, the teams are asked to

finalize their Action List and complete a “Group Decision”

section at the bottom of the Inspection Report Form, in

which the team recommends whether or not the “System

Specification” document should be accepted or revised.

3.5 Recapping the Exercise
After the teams submit their Action List and Inspection

Report Form, the instructor discusses how these documents

will be used to support the “Rework” and “Follow-Up”

stages of the inspection process. Also, the instructor reviews

the defects that are present in the specification document and

answers any questions that students may have regarding the

inspection exercise or the software inspection process.

4. CLASS EXPERIENCE

The software inspection exercise has been used in many

sections of the undergraduate Systems Analysis and Design

course taught by the author. The students taking the course

were typically “traditional” undergraduate students with

limited work experience in the area of systems development.

Based on the author’s observations, the students appeared to

enjoy doing the exercise and seemed to learn from the

experience. To supplement the author’s observations, a

survey questionnaire has been administered to the students to

www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 344

gain feedback regarding the exercise. The survey was used to

measure the students’ perceptions and does not measure

changes in actual student learning performance. Hence, the

survey has limitations. Nonetheless, the survey does provide

a way to assess the students’ reaction to the exercise. The

survey data spans three years and six sections of the course.

The survey was completed by all students who completed the

exercise, providing a sample size of N=110. The sample

represented 36 inspections teams with team sizes ranging

from 2 to 4 students (3 teams of two members, 28 teams of 3

members, and 5 teams of 4 members).

A primary reason for doing the inspection exercise was to

help students learn more about the software inspection

process. Ideally, as an outcome of doing the exercise, the

author wanted the students to build their confidence

regarding the software inspection process. It appears that the

exercise was effective in this regard. As indicated in Table 1,

after completing the exercise, the students reported a

significantly increased sense of confidence with respect to

the task of organizing and conducting a software inspection.

Hopefully, this increased level of confidence may encourage

students to conduct software inspections in the future.

In addition to helping students learn more about the software

inspection process, the author hoped that students would gain

other educational benefits. Several published articles have

indicated that the software inspection process may offer

educational benefits for the participants such as improved

analytical abilities and defect detection abilities (e.g., Bisant

and Lyle, 1989; Fagan, 1976; Doolan, 1992). As indicated in

Table 1, feedback from the students indicates that they

strongly believed that the exercise helped them to gain

knowledge that would allow them to prepare higher quality

specification documents and identify defects.

In order to determine whether or not the students found the

team inspection meeting to be useful, the students were

asked to rate their understanding of the defects before and

after the inspection meeting. It appears that the inspection

meeting aspect of the exercise was worthwhile, as the

students indicated a significantly better understanding of the

defects within the specification document following the

exercise (see Table 1).

Lastly, from an instructional perspective, the implementation

success of a new class exercise can often hinge on how

favorably the students view the exercise. Based on the

author’s observations, students seemed to be very motivated

to do the inspection exercise and actually seemed to enjoy

doing the task. These observations were supported by the

survey data shown in Table 1, as the students indicated a

high level of satisfaction with the exercise process and

generally found the exercise to be a pleasant experience. The

positive feedback regarding the exercise was not based on a

perception that the exercise was easy, as teams generally

identified only about half of the defects existing in the

specification document.

Questionnaire Item Mean Std
Pre vs. Post Exercise: Change in Confidence T-Test
 Before I did this exercise I was confident that I could organize and conduct a

successful software inspection process.

3.49 1.38

After doing this exercise I am confident that I could organize and conduct a

successful software inspection process.

5.55 1.09

p<.000

(t=15.3)

Perception of Knowledge Gains

As a result of participating in this exercise, I gained knowledge that will help me:

To prepare higher quality specification documents in the future (i.e.,

documents similar to the one used for this exercise).

5.90 0.96

To be more effective in identifying defects in a system specification

document such as the document used for this exercise.

5.86 1.00

Pre vs. Post Group Meeting: Change in Understanding T-Test
When I got done with the individual defect identification portion of the exercise

(step 2), I had a very clear understanding of the defects existing within the

specification document.

5.28 1.07

Following the group inspection portion of the exercise (step 3), I now have a very

clear understanding of the defects existing within the specification document.

5.66 1.03

 p<.000

(t=3.96)

Satisfaction with Process and Perception of Exercise Mean Std
I was satisfied with the process that was used in this exercise to identify defects

and generate the Action List.

5.92 0.94

Performing this exercise was a pleasant experience.

5.62 1.17

Notes:

1) Rating value is based on a 7-point Likert scale ranging from 1 (strongly disagree) to 4 (undecided) to 7 (strongly agree).

2) Number of respondents: N=110 (36 teams).

Table 1: Student Perceptions of Inspection Exercise

www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 345

5. SUMMARY COMMENTS

Overall, the author has found the software inspection

exercise to be a worthwhile component to the Systems

Analysis and Design course. Given the importance of

software inspections to the practice of systems analysis and

design, it seems appropriate to allocate some class time to

this important topic. The exercise discussed in this article

provides an experiential approach to help students gain a

better feel for the software inspection process. By working

through the exercise, students often gain enough confidence

to attempt the approach on their own (using the steps

discussed in the exercise). The author has observed that once

students have completed the exercise, they will often apply

their new inspection skills to other class activities such as

team-based software development projects.

As described above, the hands-on portion of the exercise can

be completed within an hour and a half. However, the timing

for the exercise can be adjusted by the instructor to be

shortened or extended. For example, for classes that meet

over a two-hour period, the overview lecture on software

inspections can be added at the beginning of the class session

to fill the class time. Alternatively, for classes that meet over

a one-hour period, the Preparation step could be conducted

by students as an individual exercise prior to the class

session. The exercise has the flexibility to fit within different

types of class room timing constraints.

The exercise described here is suitable for a Systems

Analysis and Design course which focuses on the traditional

structured approach to analysis and design. If an instructor is

teaching the Analysis and Design course using object-

oriented methods, then the exercise will need to be

redesigned. However, the general inspection steps discussed

in this article will still be applicable. For instance, the

inspection process is just as appropriate for the evaluation of

use cases (e.g., Thelin, Runeson, and Wohlin, 2003) as it

would be for the evaluation of DFDs. Regardless of the type

of system development methodology used in the classroom,

it can be useful to develop a student’s awareness and

capabilities with regard to one of the most powerful

approaches for improving software quality: the software

inspection process. It is hoped that this article may inspire

other instructors to include more coverage of the software

inspection process into the Systems Analysis and Design

course.

6. REFERENCES

Ackerman, A. F., Buchwald, L.S., and Lewski, F.H. (1989)

"Software Inspections: An Effective Verification Process,"

IEEE Software, Vol. 6, No. 3, pp. 31-36.

Bisant, D.B. and Lyle, J.R. (1989) "A Two-Person

Inspection Method to Improve Programming

Productivity," IEEE Transactions on Software

Engineering, Vol. 15, No. 10, pp. 1294-1304.

Boehm, B. (1987) "Industrial Software Metrics Top Ten

List," IEEE Software, Vol. 4, No. 5, pp. 84-85.

Boehm, B. and Basili, V.R. (2001) “Software Defect

Reduction Top 10 List,” IEEE Computer, Vol. 34, No. 1,

pp. 135-137.

Doolan, E.P. (1992) "Experience with Fagan's inspection

method," Software: Practice and Experience, Vol. 22, No.

2, 1992, 173-182.

Gilb, T. and Graham, D. Software Inspection, Addison-

Wesley, Wokingham, England, 1993.

Glass, R.L. (1999) “Inspections – Some Interesting

Findings,” Communications of the ACM, Vol. 42, No. 4,

pp. 17-19.

Ebenau, R.G. and Strauss, S.H. (1994) Software Inspection

Process. McGraw-Hill, New York, NY.

Fagan, M.E. (1976) “Design and Code Inspections to Reduce

Errors in Program Development,” IBM Systems Journal,

Vol. 15, No. 3, pp. 182-211.

Fagan, M.E. (1986) “Advances in Software Inspections,”

IEEE Transactions on Software Engineering, Vol. 12, No.

7, pp. 744-751.

IEEE Computer Society. (1989) IEEE Standard for Software

Reviews and Audits (IEEE Std. 1028-1988). IEEE, New

York, NY.

Laitenberger, O. and DeBaud, J. (2000) “An Encompassing

Life Cycle Centric Survey of Software Inspection,”

Journal of Systems and Software, Vol. 50, pp. 5-31.

Mahapatra, R., Nerur, S.P., and Slinkman, C.W. (2005)

“Teaching Systems Analysis and Design – A Case for the

Object Oriented Approach,” Communications of the AIS,

Vol. 16, pp. 848-859.

Thelin, T., Runeson, P., and Wohlin, C. (2003) “Prioritized

Use Cases as a Vehicle for Software Inspections,” IEEE

Software, Vol. 20, No. 4, pp. 30-35.

Yourdon, E. (1989) Structured Walkthroughs, Prentice Hall:

Englewood Cliffs, NJ.

AUTHOR BIOGRAPHY

Craig K. Tyran is an Associate Professor in the Department

of Decision Sciences at Western

Washington University. He received

his PhD from the University of

Arizona in Management Information

Systems, his MBA from UCLA, and

his undergraduate and master’s

degrees in engineering from

Stanford University. Dr. Tyran

conducts research in the areas of

technology support for collaboration

and learning. His work has been published in MIS Quarterly,

the Journal of Management Information Systems, the

Communications of the ACM, and a variety of other

publication outlets. In addition, he has presented his research

at numerous national and international conferences.

www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 346

APPENDIX A: DIRECTIONS FOR SOFTWARE INSPECTION EXERCISE

Step 1: Preparation

Objective: If you are on an inspection team, a key task that you will need to address before you start looking for defects is to

become familiar with the work product that will be reviewed. The purpose of this step will be to get familiar with the

system specification for the "Cascade Real Estate Information System."

The Scenar io: In this exercise you will be reviewing a draft of an analysis document that describes a proposed information

system for a real estate firm. Assume that the document has been prepared by a newly hired systems analyst named

Joseph Analyst. Joseph will ultimately be reviewing his work with the management of real estate firm and wants to have

his document inspected by others so that he can improve the quality of his work. The document includes a) a “Narrative

Overview” description of the system and its processes, b) a project dictionary, and c) data flow diagrams (DFDs). Please

take some time to read through the analysis specification and become familiar with it.

Note: It is important for you to have a basis for knowing what the project dictionary and data flow diagrams are supposed to

represent. You may assume that the textual “Narrative Overview” section of the specification provides an accurate

description of the system processes – for purposes of this exercise, assume that the “Narrative Overview” section does

NOT have defects. Using the “Narrative Overview” as a basis, you will find that the project dictionary and DFDs

created by Joseph Analyst DO have defects.

Step 2: Defect identification

Objective: The purpose of this step is to search for defects in the document. This step will be an individual activity. (In Step

3 you will share your findings with your team when you conduct the inspection meeting to generate your team's Action List.)

Guidelines:

‚ When in doubt use “Narrative Overview” as the "basis": As noted earlier, you may assume that the written narrative

section of the specification provides an accurate description of the system.

‚ Record your findings: Please record your defect findings on a sheet of paper. You will later be sharing your findings with

your teammates. Defects may include specification aspects which are incorrect, missing, or difficult to understand.

‚ Detection, not correction!: A standard guideline for the inspection process is to focus on the detection of defects – not the

correction of the defects. Please do not attempt to figure out how to correct the defects that you find. You only need to

detect the defect. The author of the work product you are reviewing will be responsible for making corrections.

‚ If you are not sure whether you found a defect ….: If you are not sure whether you have identified an actual defect or not,

go ahead and record it. You and your team will have the chance to address and discuss each potential defect during the

team inspection meeting that follows this step of the exercise.

Step 3: Develop " Action List" with team

Objective: Now you are ready to conduct the team inspection. This step will be a team activity. Your team's goal will be to

create an “Action List” that will be provided to Joseph Analyst to identify aspects of his work that require improvement.

Your team: Your team has already been assigned. Please gather together with the other members of your team.

Guidelines:
‚ Review the individual findings: Please have each team member orally step through each of his/her findings. For each

finding, the group will need to decide whether the finding is an item that should be included on the "Action List." Your

team may encounter one or more potential defects that seem to fall into a gray area (i.e., "Is this a defect or isn't it?"). To

help deal with such situations, your team may include the following three types of items on the Action List:

o A defect: This is something that the team agrees is wrong and wants to see fixed.

o A suggestion: This is something that may not be necessarily be a defect, but someone on the team would like to see

it modified (e.g., a data flow that is labeled somewhat poorly).

o An open issue: This is an item that appears to be problematic, but requires more information before it can be

classified as a defect.

‚ Create the Action List: As your team reviews the individual findings, you will create your action list using the Action List

form that has been provided to you.

o Please indicate whether a finding is a "Defect," "Suggestion," or "Open Issue."

‚ New findings? … Include them!: Many inspection teams experience a "synergy effect" and generate new findings during

the team inspection meeting. Please be sure to include any of these "new" findings on your team's Action List.

www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 347

APPENDIX B: SYSTEM SPECIFICATION DOCUMENT FOR REAL ESTATE LISTING SYSTEM

Project Name: Cascade Real Estate Listings Information System

Author: Joseph Analyst

Scenar io Background: Cascade Real Estate is a residential real estate firm located in a small rural city named Cascade

Village. Due to the small size of the Cascade Village, Cascade Real Estate is the only real estate firm in town and handles all

real estate transactions between sellers and buyers. Currently, Cascade Real Estate uses a manual process to receive, store, and

organize information about home listings and buyer preferences. (Note: A "listing" refers to a house which has been put on the

housing market.) However, in the interest of modernizing its operations, the management of Cascade Real Estate has decided

to fund the development of a computerized system support the firm’s operations related to information management and

reporting for the management and buyers. A context data flow diagram (DFD) is provided to show the key processes and the

external entities to the system (see Figure 1).

Narrative Overview of System

Note: Assume that the following Narrative Overview is accurate and does NOT contain defects.

Overview of Major Sub Processes for System: Based on interviews with the management and employees of Cascade Real

Estate, the following is a summary of the three major sub processes for the proposed system. These processes are represented

in the Level-0 data flow diagram for the system (see Figure 2).

‚ Process 1.0 (Receive and Store Listings Information): This sub process receives and stores information submitted by

home owners who have contracted with Cascade Real Estate to sell their home through Cascade Real Estate. The

information submitted by home owners includes data about their home (see data dictionary for specifics). The information

should be stored in the Listings File. This process is a functional primitive.

‚ Process 2.0 (Receive and Store Buyer Information): This sub process receives and stores information submitted by

potential home buyers who would like to purchase a new home in Cascade Village. Information includes data about the

buyers and their requirements for a new house (see data dictionary for specifics). The information is stored in the Buyer

File. This process is a functional primitive.

‚ Process 3.0 (Generate Reports): This sub process generates two types of reports: 1) A summarized listing report for the

firm's managing partner (i.e., a report which summarizes all of the firm's house listings), and 2) A customized listing

report for the potential home buyers. This process is not a functional primitive.

Overview of the “Generate Reports” Process: Two types of reports are generated every week: the management report and the

customized reports for potential buyers. Based on interviews with the management and employees of Cascade Real Estate, the

following is a summary of the three sub processes associated with the “Generate Reports” process. These sub processes are

represented in the Level-1 data flow diagram for the “Generate Reports” sub process (see Figure 3). Each of the following sub

processes is a functional primitive.

‚ The management report is prepared by obtaining the listings records from the Listings File. The Listings File includes

all homes which have been listed with the Cascade Real Estate firm. The listings are summarized into a report that is

sent to the firm’s managing partner.

‚ A customized listing report for each potential buyer (also referred to as a “client”) is prepared by accessing data from the

Listings file and the Buyer File. The contents of the Listings File are compared with each potential buyer's stated

requirements for a new home (e.g., number of bedrooms and bathrooms, size of lot). Each buyer's requirements are

accessed from the Buyer File. Homes listed by Cascade Real Estate which are suitable for each buyer are identified and

summarized into a customized listing report.

‚ A mailing label is prepared for each customized listing report by accessing the appropriate potential buyer's address

from the Buyer File. Each customized report is then mailed to the appropriate potential buyer after affixing the mailing

label to the report.

www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 348

APPENDIX B: SYSTEM SPECIFICATION DOCUMENT FOR REAL ESTATE LISTING SYSTEM (CONT.)

Project Dictionary

Notes: 1) This Project Dictionary was prepared by Joseph Analyst and may contain defects.

2) The bracket notation used below ({}) represents a repeating group of data.

‚ Process Descriptions

o Process descriptions have not yet been prepared for any of the functional primitives

‚ External Entities (Sources/Sinks)

o Seller: Sellers enlist the services of Cascade Real Estate to help sell their homes.

o Buyer: Buyers enlist the services of Cascade Real Estate to help find a home to purchase.

o Managing Partner: The top management official of Cascade Real Estate.

‚ Data Stores

o Buyer File = {Buyer File Record}

o Listings File = {Listings File Record}

‚ Data flows and data structures

o Buyer Address = Buyer Name + Buyer Address Record

o Buyer File Record = Buyer Requirements

o Buyer Name = First Name + Last Name

o Buyer Requirements = Buyer Name + Buyer Requirements Record

o Buyer Requirements Record = Number of Bedrooms + Number of Bathrooms

+ Square foot size + House style + Lot size + School district

o Customized Report = Buyer Name + {Listing Number + Listing Date

+ Listing Sales Price + House Address Record + Number of Bedrooms

+ Number of Bathrooms + Square Foot Size + House Style}

o Customized Report with Mailing Label = Buyer Name + {Listing Number

+ Listing Date + Listing Sales Price + House Address Record

+ Number of Bedrooms + Number of Bathrooms + Square Foot Size + House Style} + Buyer Address Record

o House Address Record = Street Address + City + State + Zip code

o Listings = Listing Number + Listing Date + Listing Sales Price

+ House Address Record + Number of Bedrooms + Number of Bathrooms

+ Square Foot Size + House Style

o Listings File Record = Listing Number + Listing Date + Listing Sales Terms

+ Listing Price + House Address Record + Number of Bedrooms + Number of Bathrooms + Square Foot Size +

House style + Lot_ size + School district

o Management Report = {Listing Number + Listing Date + Listing Sales Price

+ House Address Record + Number of Bedrooms + Number of Bathrooms

+ Square Foot Size + House Style}

‚ Data elements

o Project dictionary entries have not yet been prepared for any of the data elements.

www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 349

APPENDIX B: SYSTEM SPECIFICATION DOCUMENT FOR REAL ESTATE LISTING SYSTEM (CONT.)

Figure 1: Context DFD for Cascade Real Estate Listing System

(Note: Diagram was prepared by Joseph Analyst and may contain defects)

Figure 2: Level-0 DFD for Cascade Real Estate Listing System

(Note: Diagram was prepared by Joseph Analyst and may contain defects)

www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 350

APPENDIX B: SYSTEM SPECIFICATION DOCUMENT FOR REAL ESTATE LISTING SYSTEM (CONT.)

Figure 3: Level-1 DFD for Process 3.0, “Generate Repor ts”

(Note: Diagram was prepared by Joseph Analyst and may contain defects)

www.manaraa.com

Journal of Information Systems Education, Vol. 17(3)

 351

APPENDIX 1 – Extract from Module Template (2004/2005 delivery)

Module Character istics

The development of modern information systems is a highly complex activity. A typical project often involves a team of

people from different professional backgrounds and with many different skills. They may work together for many weeks or

months to design and build software that meets the needs of its users. This module gives an insight into the many tasks that

must be carried out during such a project. It provides a practical introduction to some of the techniques used at different stages

of a project. It also illustrates how these tasks fit together within the overall project framework, and how they can be managed

to ensure that the aims of the project are met.

The intention of this module is to provide the student with a practical, integrated overview of the Information Systems (IS)

development process, from project selection and inception, through the capture and analysis of user requirements, to the

design and production of a simple prototype system that satisfies those requirements. A constrained case study is used to take

the student through a complete structured development cycle.

The module also introduces relevant theory including: the concept and different types of IS; the impact of IS on people,

organisations and society; the systems development lifecycle (SDLC) and the various forms it can take; the nature and purpose

of abstraction; typical models created during systems analysis and design; the key documents produced at stages of the SDLC;

and the evaluation and review of a development project.

The module lays a foundation of skills and understanding for a number of later modules including (but not limited to)

Database Design and Implementation, Object-Oriented Systems Analysis and Design, Comparative Systems Development

Methodologies, Information Services Management and the Final Year Project. It also provides an understanding of the context

in which all IS work is undertaken, and thus helps the student to develop a coherent view of their future profession.

 Learning Outcomes

1. Explain key concepts in the Information Systems domain, and discuss the impact of IS on individuals, organisations and

society.

2. Explain the role, significance and typical activities of project selection, project management, systems analysis and design.

3. Apply appropriate techniques to produce a requirements specification and design for a constrained case study, based on

supplied information about user requirements.

4. Apply practical systems development skills to implement a prototype system in an environment such as MS Access.
5. Evaluate the extent to which the implemented system satisfies user requirements.

Indicative Content

̇ Information Systems: definition, types and components of.

̇ Systems Development Lifecycle: traditional (waterfall); alternatives to: iterative & incremental, spiral, prototyping.

̇ Project Selection and Feasibility Assessment: overview of Cost Benefit Analysis; feasibility presentation and report;

impact on organisation, individual and society; professionalism and ethics.

̇ Project Management: role and significance; use of simple techniques such as work breakdown structure and Gantt chart.

̇ Systems Analysis: function of, tasks undertaken. Abstraction: reasons for and forms of.

̇ Fact Finding Techniques: SQUIRO. Models for requirements capture, e.g. Use Cases.

̇ Models for requirements analysis, e.g. Data Flow Diagrams, Entity-Relationship Models. Models for design, e.g. Entity-

Relationship Models, Activity Diagrams.

̇ Documentation such as Requirements Specification, Design Specification: function of and typical format.

̇ Design issues: elements of HCI, form/report/navigation design. Data design. Process design. Basic elements of systems

architecture.

̇ Realisation of design using, e.g., MS Access. Creation of tables from design model; designing suitable input forms;

writing and executing queries using SQL; producing suitable output (screens and reports) to meet user requirements as

specified in Requirements Specification.

̇ Review of prototype produced against user requirements.

www.manaraa.com

